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SUMMARY
In studies involving diseases associated with high rates of mortality, trials are frequently conducted to

evaluate the effects of therapeutic interventions on recurrent event processes terminated by death. In this
setting, cumulative mean functions form a natural basis for inference for questions of a health economic
nature, and Ghosh and Lin (2000) recently proposed a relevant class of test statistics. Trials of patients
with cancer metastatic to bone, however, involve multiple types of skeletal complications, each of which
may be repeatedly experienced by patients over their lifetime. Traditionally the distinction between the
various types of events is ignored and univariate analyses are conducted based on a composite recurrent
event. However, when the events have different impacts on patients’ quality of life, or when they incur
different costs, it can be important to gain insight into the relative frequency of the specific types of events
and treatment effects thereon. This may be achieved by conducting separate marginal analyses with each
analysis focusing on one type of recurrent event. Global inferences regarding treatment benefit can then
be achieved by carrying out multiplicity adjusted marginal tests, more formal multiple testing procedures,
or by constructing global test statistics. We describe methods for testing for differences in mean functions
between treatment groups which accommodate the fact that each particular event process is ultimately
terminated by death. The methods are illustrated by application to a motivating study designed to examine
the effect of bisphosphonate therapy on the incidence of skeletal complications among patients with
breast cancer metastatic to bone. We find that there is a consistent trend towards a reduction in the
cumulative mean for all four types of skeletal complications with bisphosphonate therapy; there is a
significant reduction in the need for radiation therapy for the treatment of bone. The global test suggests
that bisphosphonate therapy significantly reduces the overall number of skeletal complications.

Keywords: Marginal methods; Multivariate response; Recurrent event; Robust inference; Terminal event.

1. INTRODUCTION

In studies involving diseases associated with high mortality rates, trials are frequently conducted to
evaluate the effects of therapeutic interventions on response processes terminated by death. Examples
include studies of medical costs (Linet al., 1997; Bang and Tsiatis, 2000), quality of life (Zhao and
Tsiatis, 1997, 1999) and recurrent events (Cook and Lawless, 1997; Li and Lagakos, 1997). Interest
typically lies in cumulative aspects of such response processes, such as the cumulative lifetime costs,
quality adjusted lifetime, or the cumulative lifetime number of events. Analyses dealing with such
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questions must address the dependent censoring of the cumulative response which results from the fact that
survival times are typically right-censored for some individuals (Strawderman, 2000). Suitable techniques
are frequently formulated in terms of ‘inverse probability of censoring weighted’ analyses, although
alternative approaches can also be taken (e.g. Strawderman, 2000).

For problems in which a single type of recurrent event is of interest, Cook and Lawless (1997)
proposed the use of cumulative mean functions which reflect the marginal cumulative mean number
of events experienced per patient over time, accounting for the fact that the recurrent event process is
terminated by death. Such mean functions form a natural basis for inference for questions of a health
economic nature or for other settings where interest lies in comparing overall disease burden at the
population level. If interest lies in testing for differences in cumulative mean functions between groups, a
class of test statistics recently developed by Ghosh and Lin (2000) may be used.

Trials of patients with cancer metastatic to bone, however, involve multiple types of skeletal
complications which may be repeatedly experienced by patients over the course of follow-up (Theriault
et al., 1999). Traditionally the distinction between the various types of events is ignored and univariate
analyses are conducted based on a composite recurrent event. However, when the events have a different
impact on quality of life, or when they incur different costs, it can be important to gain insight into the
relative frequency of the various types of events and treatment effects thereon. This may be achieved by
conducting separate marginal analyses with each analysis focusing on one type of recurrent event. Global
inferences regarding treatment effect can then be conducted by carrying out multiplicity adjusted marginal
tests, using more formal multiple testing procedures, or by constructing global test statistics. We describe
methods for testing for differences between treatment groups with respect to multiple cumulative mean
functions in the presence of a common terminal event (i.e. death). These methods will be shown to be
valid in settings where there is a dependence between the recurrent event rate and survival time; naive
tests based on rate functions (e.g. Cooket al., 1996) are invalid in such settings.

The remainder of the paper is organized as follows. In Section 2 we briefly discuss a motivating trial
which was designed to assess the effect of bisphosphonate therapy on the occurrence of various skeletal
complications in patients with breast cancer metastatic to bone (Theriaultet al., 1999). We develop the
methods in Section 3 and report on the results of simulation studies in Section 4. The methods are applied
to the data from Theriaultet al. (1999) in Section 5. Concluding remarks and topics for future research
are given in Section 6. Note that while our focus is on problems with multiple types of recurrent events,
the methods we describe are easily adapted to deal with multi-type quality of life data which arises by
separately considering different domains of quality of life, or multi-type cost data which would arise if it
was of interest to separately examine personnel costs, drug costs, etc.

2. BISPHOSPHONATES FOR THE TREATMENT OF BONE METASTASES

Theriaultet al. (1999) report on a multicenter randomized trial designed to investigate the effect of
a bisphosphonate, pamidronate, on the development of skeletal complications in breast cancer patients
with bone metastases. Patients were accrued from 85 study sites in the United States, Canada, Australia
and New Zealand. Patients with stage IV breast cancer receiving cytotoxic chemotherapy with at least
two predominantly lytic bone lesions at least one centimeter in diameter were randomized within strata
defined by ECOG status. A total of 371 women were enrolled in the study with 182 randomized to receive
90 mg of pamidronate every four weeks and 189 randomized to receive dextrose infusions at the same
time points. After completion of the planned one year of follow-up, the follow-up was extended for an
additional year to assess long-term effects and survival. At monthly visits patients were assessed and
the occurrence of skeletal complications was recorded. Skeletal complications include nonvertebral and
vertebral fractures, the need for surgery to treat or prevent fractures, and the need for radiation for the
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Fig. 1. Sample profile features for various skeletal complications and survival (open circles represent right censored
survival times).

treatment of bone pain. Each patient was followed until death, the last date of contact, or loss to follow-
up. Figure 1 displays the timing and number of skeletal related events for four patients from Theriaultet al.
(1999). This figure illustrates the fact that each patient may experience more than one of each type of event
prior to death, and that some deaths are right-censored. The focus here is (i) to estimate the cumulative
mean number of events of each type over time in the control and treatment arms, (ii) to examine the effect
of bisphosphonate therapy on the cumulative mean number of events of each type, and (iii) to carry out
global assessments of the effect of bisphosphonate therapy.

3. MULTI -TYPE RECURRENT EVENTS WITH DEPENDENT TERMINATION

3.1 Methods for univariate recurrent events

Suppose there are a total ofm subjects accrued into a study and each subject is at risk for a particular
type of recurrent event. Let(0, τ ] represent the period of observation and letN∗

i (u) be a right-continuous
integer function representing the number of events experienced by subjecti over theinterval (0, u], i =
1, 2, . . . , m, 0 < u � τ . During the observation period(0, τ ], some subjects may experience an event
which terminates the recurrent event processes (e.g. death), but they may also withdraw from the study
according to some random censoring mechanism which is independent of the recurrent event and terminal
event processes. Fori = 1, . . . , m, let Ti be the time of the terminating event,Ci the censoring time,
Xi = min(Ti , Ci ), π(t) = Pr(Xi � t), andδi = I (Xi = Ti ), whereI (·) is the indicator function. We
let Ni (t) = N∗

i {min(t, Ti )} denote the number of recurrent events observed over(0, t] in the presence
of death. The data contributed by each subject then take the form({Ni (u), 0 < u � Xi }, Xi , δi ), i =
1, . . . , m. Let Yi (t) = I (Xi > t) be the at risk indicator function which is one when subjecti is under
observation and at risk for the recurrent events at timet , and is zero otherwise. We suppose initially that
we have a single sample of subjects.

A marginal approach for the analysis of recurrent events in the presence of a dependent terminal event
wasproposed in Cook and Lawless (1997). In this approach the distribution of the failure time is modeled
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marginally, but the rate function for the recurrent events is specified conditionally on the subject not having
experienced the terminal event before some time pointt . Thus we may write the rate of events for subject
i at timet , conditional on them not having experienced the terminal event up to timet , as

dR(t) = E{dNi (t)|Ti � t}, 0 � t. (3.1)

Then, the expected number of events over the interval(0, t], conditional on the terminal event not
occurring beforet (i.e. R(t) = E{Ni (t)|Ti � t}), can be estimated via a Nelson–Aalen type estimate
as

R̂(t) =
∑m

i=1 Yi (t)Ni (t)∑m
i=1 Yi (t)

. (3.2)

The marginal expectation for the number of recurrent events over the interval(0, t], accounting for
possible termination of the event process, is given by

µ(t) = E{N (t)} =
∫ t

0
P(T � u) E{dN (u)|T � u}du =

∫ t

0
S(u)dR(u), (3.3)

whereS(u) is survival function of terminal event times. An estimate ofµ(t) is given by

µ̂(t) =
∫ t

0
Ŝ(u)dR̂(u), (3.4)

where dR̂(u) = ∑m
i=1 Yi (u) dNi (u)/

∑m
i=1 Yi (u) and Ŝ(u) is the Kaplan–Meier estimate of the survival

function (Cook and Lawless, 1997).
To make inferences about differences between two groups (say a treatment and a control group), tests

may be constructed based on marginal cumulative mean functions. Letzi be a binary covariate such that
zi = 1 for subjects in the treated group andzi = 0 for subjects in the control group, and letµ1(t)
andµ0(t) denote the marginal mean functions for the treatment and control groups respectively, where
µ�(t) = ∫ t

0 S�(u)dR�(u), � = 0, 1. Note that the survival distributions for the control and treatment
groups need not be the same. It is therefore important to interpretµ�(t) as the marginal cumulative mean
number of events in group�, adjusted by the fact that the recurrent event process is terminated by death.
The mean function may be lower in one group due to a lower conditional rate function dR(u) or a higher
mortality rate. Insight into which of these reasons explain any apparent differences can be gained from
simultaneous consideration of Kaplan-Meier plots of the survival functionŜ(t), the naive estimate of the
cumulative mean function̂R(t), and the estimate of the marginal cumulative mean functionµ̂(t). The
latter is a population attribute which is of interest in settings where the objective is to assess differences
in the overall burden of disease such as when costs are associated with events.

Suppose the null hypothesis is that there is no difference in the marginal cumulative mean functions
between the treatment and control groups,

H0 : µ0(t) = µ1(t), for 0 < t � τ.

Ghosh and Lin (2000) consider tests for this hypothesis based on a generalized log-rank statistic of the
form

Q̂ =
(m0m1

m

) 1
2
∫ τ

0
Ŵm(t)d{µ̂1(t) − µ̂0(t)}, (3.5)

whereŴm(t) is a weight function based on observed data. Our aim is to extend this methodology to deal
with settings in which there are multiple types of recurrent events.
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3.2 Tests for multi-type recurrent events

If there areK types of recurrent events, letNki (u) record the number of recurrent events of typek
occurring over the interval(0, u], k = 1, . . . , K . One strategy for dealing with this multivariate recurrent
event is to construct a composite event which is said to have occurred if any one of the particular types of
events occurs. We can let

N·i (u) = N1i (u) + N2i (u) + · · · + NK i (u).

Such an approach is somewhat appealing in the sense that the multivariate process is reduced to a
univariate process and hence methodology discussed by Ghosh and Lin (2000) can be applied to the
recurrent event processN·i (u) directly. We denote the Ghosh and Lin (2000) test statistic based on this

composite event bŷQ. and letQ̄. = Q̂./

√
v̂ar(Q̂.) represent the standardized form.

As discussed earlier, however, it may be desirable to study the relative frequency of different types
of events and to understand how a treatment affects their occurrence. In this case one may wish to
form marginal models in which each type of recurrent outcome is analyzed separately. The evidence
of treatment effects may then be interpreted marginally and in addition, one may draw simultaneous
inferences about the overall treatment effect. For example, multiplicity adjustedp-values may be
constructed to test the null hypothesis of no overall effect of treatment based on the marginalp-values
observed. Alternatively, the global statistics may be constructed to test for evidence against the null
hypothesis of no treatment effect over all event types. These are the approaches taken here, but remarks
are subsequently made regarding the use of composite events in the simulation studies.

Consider a single sample ofm subjects. Let dRk(t) = E{dNki (t)|Ti � t} andµk(t) = E{Nki (t)}
denote the conditional rate function and cumulative mean function for events of typek. These can be
estimated from (3.2) and (3.4) by replacing dNi (u) with dNki (u), for k = 1, . . . , K , andi = 1, . . . , m.
Let µ(t) = {µ1(t), µ2(t), . . . , µK (t)}′ andµ̂(t) = {µ̂1(t), µ̂2(t), . . . , µ̂K (t)}′. For each type of recurrent
event, Ghosh and Lin (2000) show that the difference betweenµ̂k(t) andµk(t) can be approximated by
the sum of independent and identically distributed random variables. Specifically,

√
m{µ̂k(t) − µk(t)} = 1√

m

m∑
i=1

�ki (t) + op(1),

where the expression for�ki (t) is given in expression (A.1) of the Appendix. For fixedt , �ki (t) are
independent and identically distributed mean zero random variables and we show in the Appendix that√

m{µ̂(t) − µ(t)} follows a mean zero asymptotic multivariate normal distribution. The asymptotic
covariance between thej th component andkth component is consistently estimated by

ξ̂ jk = 1

m

m∑
i=1

{�̂ j i (t)�̂ki (t)}; 1 � j, k � K ,

where �̂ki (t) is obtained by replacing all the unknown quantities of�ki (t) with their corresponding
empirical estimates. Letm� = m�(0) denote the number of subjects initially in group�, � = 0 or 1,
m = m0 + m1, andµ̂k�(t) is the estimate of the mean function for eventk and group� from (3.4) by
replacing dNi (u) with dNki (u). For the two sample problem a marginal test statisticQ̂k can be obtained
from (3.5) by replacing d̂µ�(t) with dµ̂k�(t) giving

Q̂k =
(m0m1

m

) 1
2
∫ τ

0
Ŵm(t)d{µ̂k1(t) − µ̂k0(t)}, (3.6)
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where the weight function is given by

Ŵm(t) = m0(t)m1(t)

m(t)

m

m0m1
,

with m�(t) = ∑m
i=1 I (zi = �)Yi (t) for � = 0 and 1,m(t) = m0(t) + m1(t), and wherezi is a binary

covariate. Ifm0/m → ρ0, m1/m → ρ1 asm → ∞, then

lim
m→∞ Ŵm(t) = π0(t)π1(t)

π(t)
= W (t),

whereπ�(t) = Pr{Yi (t) = 1, zi = �} for subjecti in group�, andπ(t) = π0(t) + π1(t) (Ghosh and Lin,
2000).

Suppose that it is of interest to test the overall null hypothesis of no treatment effect on any of the
recurrent event types. If

Hk0 : µk0(t) = µk1(t), k = 1, 2, . . . , K ; 0 < t � τ,

are the separate null hypotheses, thenH0 = ⋂K
k=1 Hk0 is the overall null hypothesis. Let̂Q =

(Q̂1, . . . , Q̂K )′. SinceQ̂k is a function of typek events and the events are correlated, the marginal test
statisticsQ̂k , k = 1, 2, . . . , K are correlated. Thus, under the null hypotheses that treatment does not
affect any type of recurrent event,Q̂ asymptotically follows a multivariate normal distribution with mean
zero and the covariance matrix�, where the( j, k) entry of� is consistently estimated by

ĉov(Q̂ j , Q̂k) = 1

m

1∑
�=0

m1−�

m�

[
m∑

i=1

{∫ τ

0
Ŵm(t)d�̂ j i (t)

∫ τ

0
Ŵm(t)d�̂ki (t)

}
I (zi = �)

]
, (3.7)

for 1 � j, k � K . We let�̂ denote the estimator of�, andQ̄k = Q̂k/

√
v̂ar(Q̂k) denote the standardized

form of the test statistiĉQk (see Appendix). The correlation matrix of(Q̄1, Q̄2, . . . , Q̄K ) is consistently

estimated bŷ	 = {diag(�̂)}− 1
2 �̂{diag(�̂)}− 1

2 . Given these distributional results one can construct a test
statistic given byQ̂′�̂−1Q̂, which asymptotically follows aχ2

K distribution under the null hypothesis. For
the purpose of making treatment comparisons, however, more directed tests are desirable as discussed in
what follows (O’Brien, 1984).

Now that we have the marginal statisticsQ̂1, Q̂2, . . . , Q̂K and the covariance matrix among these
statistics, a global test statistic regarding treatment effects can be obtained as a special case of Rao (1973,
Section 1.f), on the optimal linear combination of several estimators. Specifically we take

Q̂w = c1Q̄1 + c2Q̄2 + · · · + cK Q̄K , (3.8)

wherec = (c1, c2, . . . , cK ) satisfiesc1 + c2 + · · · + cK = 1. The term ‘optimal’ means here that such
a linear combination will minimize the asymptotic variance among all linear transformations subject to
the restrictionc1 + c2 + · · · + cK = 1. Here the weight function given byc = (J ′	̂−1J)−1	̂−1J,
whereJ = (1, 1, . . . , 1)′ satisfies this optimality criterion. A simple calculation shows that under the null
hypothesis,Q̂w asymptotically follows a normal distribution with mean zero and asymptotic variance

estimated bŷvar(Q̂w) = (J ′	̂−1J)−1. Welet Q̄w = Q̂w/

√
v̂ar(Q̂w) denote the standardized form of this

weighted global statistic. This global statistic is similar in spirit to that proposed by Weiet al. (1989) for
multivariate survival data. One appeal to the construction of global test statistics is the fact that weights
may be chosen to reflect the relative severity or costs of the events, rather than solely on the basis of
precision considerations.
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An alternative way of testing the overall null hypothesisH0 : ⋂K
k=1 Hk0 is based on marginal test

statistics. If the overall type I error rate isα, and interest lies in making separate inferences regarding each
event type, then Bonferroni adjustments can be used. This would involve testing each null hypothesisHk0,
k = 1, . . . , K , at the nominal levelα/K . Bonferroni adjustments are well known to be conservative with
respect to the overall type I error, and if interest only lies in testing a global hypothesis, a less conservative
improvement proposed by Simes (1986) can lead to more powerful tests. In Simes’ procedure the marginal
p-values are ordered from smallest to largest and denotedp(1) < · · · < p(K ). If p(k) < kα/K for any
k = 1, . . . , K then the null hypothesisH0 is rejected and overall type I error rate is preserved. More
sophisticated less conservative methods (e.g. Armitage and Parmar, 1986, James, 1991) can be employed
based on the correlation between the test statistics, but with small to modest correlations Simes (1986)
strikes a good balance between simplicity and performance.

To compare the proposed methods with other nonparametric testing procedures, we consider the use
of a naive test based on the pseudo score statistic in Cooket al. (1996) given by

Q̂N =
∫ τ

0
W (t){d�̂1(t) − d�̂2(t)},

where�̂ j (t) = ∑m
i=1

∫ t
0 Yi (u)dNi (u)/Y.(u), j = 1, 2, are naive Nelson–Aalen estimates for the cumulative

mean function of the recurrent events. This naive standardized test statistic is denoted byQ̄N . All statistics
that we discuss here are based on one degree of freedom.

4. SIMULATION STUDIES

Here we assess the finite sample performance of various approaches to the analysis by specifying
particular models for the recurrent and terminal events. For simplicity we considerK = 2 correlated
recurrent event processes which are terminated by a common terminal event, representing death for
example. Let(ui , vi )

′ denote a bivariate normal random variable withE(ui ) = E(vi ) = 0, var(ui ) = σ 2
1 ,

var(vi ) = σ 2
2 , and corr(ui , vi ) = ρ. Conditional onui , let the terminal event timeTi be taken to follow a

log normal distribution, so
{log(Ti )|ui , vi } ∼ N (µi , σ

2
T ),

whereµi = µ0 + ui is the mean,µ0 is the intercept. This implies that unconditionally log(Ti ) follows a
normal distribution with meanµ0 and variance(σ 2

T + σ1v
2). An independent right censoring timeCi is

taken to follow an exponential distribution with meanψ whereψ can be chosen to give varying degrees
of censoring for the terminal event time. Conditional onvi , typek recurrent events are taken to follow a
Poisson process with rate function

λki (s|vi , zi ) = λk0(s) exp(z′
iβk + vi ), 0 � s � ti , i = 1, . . . , m, k = 1, 2,

whereλk0(s) is a baseline rate function,zi = 1 if subjecti is in the treatment group andzi = 0 otherwise.
Hereβk reflects the effect of treatment on events of typek, k = 1, 2 andvi models residual heterogeneity
in the rate of events among subjects within the same treatment group as well as the association between
type 1 and 2 recurrent events. The association between the recurrent events and the time of the terminal
event is modeled by the correlationρ = corr(ui , vi ).

Data for m = 200 subjects were simulated with 100 subjects in the treatment and control groups
respectively observed over the interval(0, τ ] where without loss of generality we takeτ = 1. For the
survival timeT , we let µ0 = 0.5 andσ 2

T = 0.1. We adopt time-homogeneous baseline event rates of
λk = 4 or 8,k = 1, 2 to represent moderately frequent and more frequent recurrent events. We letβk = 0
when we want no treatment effect on the rate of events for thekth process, and letβk = log(0.75) to denote
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Table 1. Empirical type I error rates (percent) for naive tests (Q̄N ),
univariate analyses (Q̄1 and Q̄2), composite endpoint analyses (Q̄.),
global tests Q̄w), Bonferroni adjusted tests (BONF) and Simes procedure
(SIMES) under the null hypothesis H0 : µk1(t) = µk0(t), k = 1, 2.†

(Based on 2000 simulations with sample size m = 200)

λ1 λ2 CEN% ρ Q̄N Q̄1 Q̄2 Q̄. Q̄w BONF SIMES
4 4 25 0.25 15.9 4.5 5.1 4.1 4.2 4.9 4.9
8 4 25 0.25 18.5 5.4 5.1 5.4 5.2 5.1 5.2
8 8 25 0.25 17.2 6.3 5.3 5.8 5.9 5.7 5.8
4 4 50 0.25 18.1 5.1 5.4 5.1 5.2 5.9 5.2
8 4 50 0.25 17.5 5.5 5.1 5.3 5.2 5.3 5.4
8 8 50 0.25 20.6 5.1 4.8 5.5 5.8 4.6 4.7
4 4 25 0.75 32.9 5.4 5.2 5.0 5.5 4.8 4.9
8 4 25 0.75 31.1 5.2 5.0 4.9 5.0 4.4 4.7
8 8 25 0.75 27.9 5.5 5.1 5.7 5.6 4.7 5.1
4 4 50 0.75 36.6 5.1 5.4 5.4 5.4 4.5 4.8
8 4 50 0.75 33.3 4.9 4.6 4.9 4.2 4.2 4.1
8 8 50 0.75 35.7 5.6 5.7 5.9 5.8 4.7 5.0
†Note: λk indicates the marginal expected number of typek event, CEN%
indicates the percentage of subjects censored at the end of the study, andρ is
the correlation coefficient between the random effects.

a treatment effect in which the event rate in the treatment group is three-quarters that of the control group,
k = 1, 2. We restrict consideration here to scenarios with shared random effects between the recurrent
event processes which leads to a positive association between recurrent events, and setσ1 = 1.0. The
correlation between random effectui andvi is set at−0.25 and−0.75, to correspond to lower rates of
recurrent events for subjects with lower hazards for the terminal event. Finally, we change the value of
the parameterψ in the censoring distribution to obtain a 25% and 50% censored data for the time of the
terminal event. The simulated observable data takes the form({Nki (u), 0 � u � Xi , k = 1, 2}, Xi , δi , zi ),
i = 1, 2, . . . , 200.

Let Q̄1, Q̄2 denote the standardized univariate Ghosh and Lin (2000) test statistics based on (3.5) and
Q̄. denote the corresponding statistic based on the composite event analysis. The statisticQ̄w represents
the weighted global test statistic based on (3.8).

First we examine the empirical type I error rates for the tests based onQ̄N , Q̄1, Q̄2, Q̄., Q̄w, univariate
tests based on Bonferroni adjustments (BONF), and Simes’ multiple testing procedures (SIMES), where
Q̄N is the naive statistic,̄Qk, k = 1, 2 are univariate test statistics based on the two event types,Q̄. is
the test statistic based on the composite recurrent event process defined by summing the counts for the
individual processes, and the global test statisticQ̄w is based on the formula in Section 3.2. To generate
the data set, we letβ1 = β2 = 0. For each combination of the baseline recurrent event rate and degree
of censoring for the terminal event, 2000 data sets are generated. For each data set, each procedure for
testing was carried out based on a two-sided test of the null hypothesis at the 5% significance level. The
empirical event rate is computed as the proportion of data sets in which the null hypothesis was rejected
by the corresponding test. From Table 1 we can see that all tests except for the naive test have empirical
type I error rates which are compatible with the nominal 5% level. We conclude that for the purpose of
constructing linear global tests, the expressions for the covariance estimates of the marginal test statistics
appear reasonable for the finite sample settings considered here. Furthermore, note that the test ignoring
the effect of termination is associated with an empirical type I error rate considerably greater than the
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Table 2.Empirical power (percent) under alternative hypothesis (with at least one or both of βk

equal to log(3/4) = −0.287) for Bonferroni adjusted tests (BONF), Simes procedures (SIMES),
composite endpoint analyses (Q̄), and global tests (Q̄w) † (based on 2000 simulations with sample

size m = 200)

ρ = 0.25 ρ = 0.75
λ1 λ2 β1 β2 CEN% BONF SIMES Q̄ Q̄w BONF SIMES Q̄. Q̄w

4 4 0.0 −0.287 25 81.4 81.5 43.3 55.2 64.8 64.9 28.4 39.7
4 4 0.0 −0.287 50 77.0 77.2 39.4 50.1 61.0 60.9 27.4 38.8
4 4 −0.287 −0.287 25 92.7 93.1 96.3 96.3 79.5 80.3 84.7 84.3
4 4 −0.287 −0.287 50 90.5 91.4 94.8 94.8 76.7 77.2 82.9 82.8

8 4 0.0 −0.287 25 81.3 81.4 24.9 82.6 66.6 66.7 15.5 81.9
8 4 0.0 −0.287 50 77.6 77.9 23.1 78.9 64.1 64.1 17.0 80.6
8 4 −0.287 0.0 25 93.7 93.9 73.4 16.8 79.3 72.3 51.4 4.3
8 4 −0.287 0.0 50 92.3 92.5 70.2 15.4 73.4 73.4 47.8 7.2
8 4 −0.287 −0.287 25 97.2 87.8 98.4 94.8 83.8 76.2 87.4 73.1
8 4 −0.287 −0.287 50 94.8 83.0 97.4 91.1 82.0 71.0 86.1 66.3

8 8 0.0 −0.287 25 94.2 94.3 52.7 69.6 77.4 77.6 32.5 55.8
8 8 0.0 −0.287 50 92.5 92.5 51.1 66.1 73.0 73.1 30.5 51.6
8 8 −0.287 −0.287 25 97.8 98.2 99.2 99.0 86.2 87.5 89.4 89.2
8 8 −0.287 −0.287 50 97.6 97.9 98.6 98.6 83.4 84.7 86.8 86.8
†Note: λk indicates the marginal expected number of typek event, k = 1, 2, andρ is the correlation
coefficient between the random effects

nominal 5% level. Thus, with the presence of terminal events, the variance estimate of the naive test
statistic is conservative.

Table 2 reports the empirical power of tests based on Bonferroni adjustments (BONF), Simes’ multiple
testing procedure (SIMES), the test statistic based on a univariate analysis of a composite event (Q̄.), and
the optimally weighted test statistic (Q̄w), under a variety of settings. In broad terms, the adjusted marginal
procedures give higher power than the analyses based on the composite event or global test statistics when
treatment effects are on one of the two events. If there are equal baseline rates for the recurrent events and
the treatment effect is the same for the processes, then analyses based on the composite event and the
global test statistic have comparable empirical power. This is in fact to be expected, since the test statistic
based on the composite event is equivalent to a weighted statistic with equal weights on all components.
Moreover, for recurrent events with equal baseline rates, common treatment effects induce equal variation
for each component test statistic, in turn giving equal weights for the two components in the global test
statistics. In summary, when the baseline event rates and the treatment effects are the same across event
types the composite event analysis and the analysis based on the global test statistic have comparable
power. These conclusions stand for bothρ = 0.25 andρ = 0.75.

Another setting arises when the baseline rate functions for the recurrent processes are the same but the
treatment effects on the two processes are different. For example, it may be that there is no treatment effect
for one type of event but the treatment may reduce the rate of the other type of event. The results in Table 2
show that the optimal global test will give much higher power to detect such treatment effects under these
parameter configurations. This increased power arises because when the treatment has no effect on one of
the processes in the composite event this process introduces additional ‘noise’ but no ‘signal’, leading to a
loss of power. This loss can be avoided in the global test statistic since the process for which the treatment
reduces the rate of events has fewer expected events; this means there is less variation associated with
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Fig. 2. Kaplan–Meier estimates of the survival functions for data from Theriaultet al. (1999) (the (+) signs in the plot
indicate right-censored survival times.)

this statistic (for a mixed Poisson process, the variance will increase when the mean increases). Hence
the global test statistics will put more weight on the process with the treatment effect and less weight on
the process without the treatment effect, thereby providing greater power. Of course one must carefully
consider the results from such global tests since their interpretation is tied heavily to the weights used in
forming the linear combination.

When the baseline rate functions are different, there are three ways in which the treatment may affect
the event rates: (i) treatment effects may be equal for both processes, (ii) the treatment may only affect the
rarer event, and (iii) the treatment effect may only reduce the rate of the more frequent event. In case (i) the
analysis based on the composite event has higher power since the global test statistic will put more weight
in the process with the lower expected number of events (because it has less variation), but the process
with more frequent event has more power to detect the treatment effect, thus, the composite statistic has
higher power. In case (ii) the global test statistic has higher power since it puts more weight on the process
with the treatment effect. On the other hand, for case (iii), the global test statistic has more weight on the
process without treatment effect, thus the composite test statistic has higher power.

This simulation study shows that the composite method and the global method are equivalent when
the baseline rates and treatment effects are equal for each type of recurrent event. We prefer the global
method when the baseline rates are equal and treatment effects are different or the treatment effect is on
the process with less events. The composite method can be used if baseline event rates are different and
treatments are equal or treatment effect is on the more frequent events.

5. APPLICATION TO THE BISPHOSPHONATE TRIAL

We now analyze the data from the study reported in Theriaultet al. (1999). Here the recurrent events
are monitored up to the time of loss to follow-up, death, orτ = 24 months, whichever comes first.
Figure 2 displays the Kaplan–Meier estimates of the survival functions for the control and treatment
groups, revealing broadly similar distributions. This is not surprising since pamidronate is designed to
improve patient quality of life by reducing the incidence of bone complications, rather than survival. The
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Table 3.Marginal analyses of the effect of bisphosphonates on non-vertebral fractures,
vertebral fractures, need for radiation, and need for surgery for data from Theriault et al.

(1999)

E{N j (τ )}† Test Optimal
Pamidronate Placebo Statistics Var p-value weightsck

Non-vertebral Q̂1 0.539 0.752 −0.109 0.126 0.388 0.232
Vertebral Q̂2 0.805 1.004 −0.112 0.193 0.562 0.189
Radiation Q̂3 0.573 1.059 −0.322 0.099 0.001 0.241

Surgery Q̂4 0.076 0.145 −0.050 0.029 0.087 0.328

Global Test‡ Q̂w −0.144 0.069 0.037
Composite Q̂. 1.993 2.960 −0.593 0.318 0.062
Composite Q̂N 2.814 4.879 −1.399 0.162 <0.001

†E{N j (τ )} indicates the marginal expected number of recurrents for both the treatment and control
groups.
‡Global test is based on weighted of the standardized version ofQ̂k , k = 1, 2, 3, 4, with the weights
given by the columnck .

log-rank test givesp = 0.635 indicating insufficient evidence to reject the hypothesis of no treatment
effect on survival. In the analyses that follow, however, we accommodate possible differences in the
survivor functions by estimating the marginal mean functions based on (3.4) separately for each group.

Table 3 provides the summarŷQ statistics for the marginal analyses of each type of recurrent event
as well as based on the Ghosh and Lin (2000) analysis of the composite event, the weighted analysis, and
a naive analysis (Cooket al., 1996). The estimated correlation matrix between the marginal test statistics
based on (3.7) is 

1.000 0.412 0.276 0.008
0.412 1.000 0.193 0.150
0.276 0.193 1.000 0.093
0.008 0.150 0.093 1.000

 (5.1)

which is instrumental in defining the weights given in the last column of Table 3. The marginal results
suggest a trend towards a reduction in the average number of each type of event with pamidronate. The
estimated correlations tend to be quite small suggesting that the Simes (1986) procedure may not be
excessively conservative in this setting if adjusted marginal analyses are of interest. To test the overall
null hypothesis of common marginal mean functions for each type of event (H0 : ⋂4

k=1 Hk0), Simes’
(1986) test leads to rejection ofH0 at the first step sincep(1) = 0.001< α/4 = 0.0125.

Analyses based on the composite recurrent event give ap-value of 0.062, while an analysis based on
the optimally weighted global statistic givesp = 0.037. The naive test based on the composite recurrent
event suggests the strongest evidence of a difference in the marginal means. Figure 3 displays the naive
and adjusted estimates for cumulative mean functions for the composite recurrent event defined by any
skeletal complication. As expected, it reveals that the marginal mean functions for the treatment and
control groups are over estimated by naive Nelson–Aalen method.

The new global statistic is constructed based on the covariance matrix estimated by (3.7). In principle,
it is possible for negative weights to occur. Pococket al. (1987) point out that this happens when the
component endpoints are of a quite different nature and there is considerable variability in the pairwise
correlations. It may be argued that the use of global test statistics is not ideal in such settings. For
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Fig. 3. Naive estimates and survival adjusted estimates for the marginal cumulative mean functions of composite
recurrent event from Theriaultet al. (1999)

the application we consider, the endpoints were chosen to represent adverse events which arise as a
consequence of metastatic bone involvement. Since it is expected that more extensive bone involvement
will lead to more of each type of skeletal complications, it is not surprising that we did not find negative
weights. A graphical display of the nature of this treatment effect on each component skeletal complication
is given in Figure 4 where the marginal cumulative mean functions are plotted against time. This plot
reveals that, as one would expect based on Table 3, the event type most affected by pamidronate is the
need for radiation for bone pain. Use of pamidronate also tends to reduce the marginal cumulative mean
number of all other types of events as well.

6. DISCUSSION

We have described a strategy for testing for treatment effects in the context of multivariate recurrent
events with a dependent terminal event. The general strategy is to construct marginal test statistics for
each type of recurrent event while adjusting for the possibility of dependent termination, and then to
synthesize the evidence across all event types by constructing a linear global test statistic. The simulation
results revealed empirical type I error rates of the proposed methods which were in close agreement
with the nominal levels. This is in contrast to the naive methods which are based on the assumption
that the recurrent event process is independently terminated; these naive approaches may underestimate
the standard errors of the test statistics and hence increase the risk of a type I error above the nominal
level. We also found that there are settings in which the global tests lead to more powerful assessments
of treatment effects than analyses based on a composite recurrent event. This occurs when the treatment
reduces the incidence of the less frequent events. In contrast, when the treatment effects were manifested
on the more frequent event types, analyses based on a composite endpoint lead to more powerful tests. A
referee has pointed out that a weighted combination of the test statistic based on a composite event and
the global test statistic may provide a means of hypothesis testing which is less sensitive to the variation
of the treatment effect across the event types. Exploration of this idea is beyond the scope of this paper
but is worthy of future research. When the proportional reduction in the rate of events is the same for each
event type, tests based on composite recurrent events and global statistics lead to comparable power.
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Fig. 4. Marginal cumulative mean functions for nonvertebral fractures, vertebral fractures, need for radiation therapy,
and need for surgery for data from Theriaultet al. (1999)

The methods proposed have the desirable property that marginal analyses are conducted as a by-
product of constructing a global test statistic. Unlike approaches based on composite events which only
show overall treatment effect, global tests provide information on how the treatment effects each type of
event. If a treatment reduces the incidence of one type of event and increases the incidence of another,
the nature of these effects may be lost if analyses are based on a composite event, but not when marginal
analyses are conducted. Software for implementing these global tests are available from the authors upon
request.

Ghosh and Lin (2000) propose the use of global tests which respond to treatment effects on both the
marginal event rate and survival. A similar extension would be straightforward to develop here, however,
we favor the use of separate tests of treatment effect for the recurrent events and survival since they are
directed at two rather different questions.

We have stressed throughout this paper that the marginal tests discussed are directed at detecting
treatment effects at the population level, which thereby implies that they are most useful for questions
related to overall disease burden to the health care system. Health economists and policy makers are
frequently interested in such quantities when the events are associated with health resource utilization and
hence costs. Even from this perspective, however, it is essential that assessments of this sort are made in
conjunction with careful examination of possible differences in the survival distributions between groups.

Alternative approaches for formulating treatment effects on the recurrent event process may be
based on a model for the recurrent events conditional on survival time (Cook and Lawless, 1997). Such
conditional models seem unnatural to some degree since they are conditional on a possibly latent variable,
and this variable is itself a response to treatment. Models of this sort are used in the context of incomplete
longitudinal data however, where they are termed pattern-mixture models. In settings with recurrent
events, they generate measures of treatment effect which are easier to relate to individual patients.
Specifically, they admit estimates of relative rates for treated versus untreated patients with comparable
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survival times. Chen and Cook (2004) consider regression-based and stratified models in this spirit which
are fit using a modified EM-algorithm.
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APPENDIX A

We describe here a straightforward generalization of Ghosh and Lin (2000)’s result for multivariate
recurrent event process. Define the counting processDi (t) = I (Xi � t, δi = 1), let Y.(s) = ∑m

i=1 Yi (s)
be the total number of subject at risk for times, then the Nelson–Aalen estimate of the cumulative hazard
function for Di (t) is given by Ĥ(t) = ∑m

i=1

∫ t
0 Y.(u)dDi (u). Let Mki (t) = Nki (t) − ∫ t

0 Yi (u)dR̂k(u)

(k = 1, 2, . . . , K ) for type k recurrent event; andM D
i (t) = Di (t) − Ĥ(t), following Ghosh and Lin

(2000) we can show that the
√

m{µ̂k(t) − µk(t)} = m− 1
2
∑m

i=1 �ki (t) + op(1) with

�ki (t) =
∫ t

0

S(u)dMki (u)

π(u)
−

∫ t

0

{µk(t) − µk(u)}dM D
i (u)

π(u)
, (A.1)

where π(u) = Pr(X � u) and S(u) is survival function of terminal event times. For fixedt , the
multivariate central limit theorem implies that

√
m{µ̂(t) − µ(t)} follows a mean zero multivariate

normal distribution. The asymptotic covariance betweenj th component andkth component is given by
σ jk = E{� j1(t)�k1(t)}, which can be consistently estimated by replacing all the unknown quantities
with their corresponding empirical estimates.

Now we will show the structure of asymptotic covariance matrix of(Q̂1, Q̂2, . . . , Q̂K ). Based on
Ghosh and Lin (2000)’s results, we know that under the null hypothesisµk1(t) = µk0(t) for all 0 � t � τ ,
Q̂k can be decomposed to give√

m1m0

m

∫ τ

0
Ŵm(t)d{µ̂k1(t) − µ̂k0(t)}

=
√

m1m0

m

[∫ τ

0
W (t)d{µ̂k1(t) − µk1(t)} −

∫ τ

0
W (t)d{µ̂k0(t) − µk0(t)}

]
+ op(1)

= 1√
m

1∑
�=0

(−1)(1−�)

√
m1−�

m�

[
m∑

i=1

{∫ τ

0
W (t)d�ki (t)

}
I (zi = �)

]
+ op(1),

wherezi is a binary covariate such thatzi = 1 for subjects in the treated group andzi = 0 for subjects
in the control group. It is clear that the above expression is a sum of independent identically distributed
random variables with mean zero. Thus, the central limit theorem ensures that(Q̂1, Q̂2, . . . , Q̂K ) has a
multivariate normal asymptotic distribution with mean zero and covariance betweenQ̂ j and Q̂k is given
by

cov(Q̂ j , Q̂k) =
1∑

�=0

√
ρ1−� E

{∫ τ

0
W (t)d� j i (t)

∫ τ

0
W (t)d�ki (t)I (zi = �)

}
, (A.2)
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for 1 � j, k � K , which can be consistently estimated by

1

m

1∑
�=0

m1−�

m�

m∑
i=1

{∫ τ

0
Ŵ (t)d�̂ j i (t)

∫ τ

0
Ŵ (t)d�̂ki (t)

}
I (zi = �). (A.3)

Ghosh and Lin (2000) provide details on how to decompose{R̂ jk(u) − R jk(u)} and{Ŝ(u) − S(u)}.
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